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It is well known that the spectral peak of wind-induced gravity waves on the sea 
surface tends to shift to lower frequencies as the fetch increases. In past theories the 
nonlinear dynamics subsequent to Benjamin-Feir instability has been found to 
initiate the downshift in narrow-banded waves in the absence of wind. However, 
these weakly nonlinear theories all predict the downshift to be only the first phase 
of an almost cyclic process. Limited by the length of a wave tank, existing 
experiments are usually made with relatively steep waves which often break. 
Although there is a theory on how breaking adds dissipation to stop the reversal of 
the initial trend of downshift, the details of breaking must be crudely characterized 
by semi-empirical hypotheses. 

Since the direct role of wind itself must be relevant to the entire development of 
wind-wave spectrum, we examine here the effect of wind on the nonlinear evolution 
of unstable sidebands in narrow-banded waves. We assume that the waves do not 
break and consider the case where the nonlinear effects that initiate the downshift, 
energy input by wind and damping by internal dissipation all occur on the same 
timescale. This means that not only must the waves be mild but the wind stress 
intensity must also lie within a certain narrow range. With these limitations we 
couple the air flow above the waves with Dysthe’s extension of the cubic Schrodinger 
equation, and examine the initial as well as the long-time evolution of a mechanically 
generated wavetrain. For a variety of wind intensities, downshift is indeed found to 
be enhanced and rendered long lasting. 

1. Introduction 
A well-known feature in the development of wind-wave spectra (e.g. Pierson, 

Neuman & James 1958; Hasselmann et al. 1973) is that as the fetch increases, the 
peak of the spectrum shifts to lower frequencies and increases in height, while the 
shape of the spectrum remains similar. It has been widely believed that this 
development is attributable to the combined effects of nonlinear wave interactions, 
input from the wind, and dissipation due to breaking. Much theoretical progress has 
been made by separately considering nonlinear interaction and wind-induced 
instability. The latter is, of course, the central topic in the theory of wind-wave 
generation. Breaking involves turbulence and air entrainment and is not yet 
amenable to thorough theoretical treatment. 

With regard to nonlinear wave interactions, Lake et al. (1977) were the first to 
point out the relevance of the dynamic evolution subsequent to the Benjamin-Feir 

t Current address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. 
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instability. In particular, they observed in a wave tank that in the initial stage of 
unstable growth, the lower sideband grows a t  a faster rate than the upper sideband, 
while the carrier wave loses energy to levels lower than the sidebands. This unequal 
growth implies a tendency of downward shift of the spectral peak. They also 
suggested that breaking may be instrumental in protecting the downshift from 
disappearing as the spectrum tends to return to the original form. Later experiments 
by Melville (1982) for rather steep waves showed that breaking occurs when 
modulation is the greatest, i.e. when the lower sideband is at its peak, therefore 
rendering it impossible for the spectrum to reverse completely. Companion theories 
by Lake et al. showed that the cubic Schrodinger equation, which is valid for weak 
nonlinearity, can only predict equal growth rates of upper and lower sidebands, and 
that the spectrum tends to return to the original form periodically over a long 
timescale. Fuller theories based either on Zakharov’s integral equation (Yuen & Lake 
1982) or Dysthe’s fourth-order extension to the Schrodinger equation (Dysthe 1979 ; 
Lo & Mei 1985) can predict the faster initial growth of the lower sideband. However, 
this asymmetry is only temporary, since the spectrum is modulated periodically and 
downshift occurs only when the modulation is greatest. Recently, Trulsen & Dysthe 
(1989) incorporated the effect of wave breaking to Dysthe’s fourth-order equation, 
by introducing a heuristic and highly simplified criterion that all waves exceeding a 
certain height lose their energy. Their results indeed show a tendency of permanent 
frequency downshift, therefore supporting Lake et al. qualitatively. To incorporate 
all physical parameters quantitatively in this breaking model is however a formidable 
theoretical task. 

So far there has been no theory on the joint effects of two elements that can be 
treated theoretically, i.e. nonlinear interaction and wind forcing ; the only exception 
being Janssen ( 1986) on the period-doubling of gravity-capillary waves. Detailed 
experiments in a relatively short tank have been reported by Bliven, Huang & Long 
(1986) who focused their attention on the initial growth of sidebands for relatively 
steep waves and strong wind. For waves with initial steepness ka = 0.22 and wind 
intensity corresponding to u;/C = 0.23-0.43 (u; is the friction velocity and C is the 
phase speed), they found that, as u;/C increases, the sideband growth rate is reduced 
and that the separation between the sidebands widens, leading to a broader 
spectrum. However, for a milder initial slope ka = 0.15 the sideband growth rate is 
not significantly affected by wind. Li, Hui & Donelan (1987) described similar 
experiments and found that the sideband growth was suppressed by a strong wind 
but enhanced by a weak wind. Attributing this to the effect of wind-induced shear 
in water, they proposed an instability theory for modulated waves on a strong and 
linear shear current, and showed that the growth rate indeed increases with weak 
vorticity but decreases with high vorticity. However, the change in spectral band 
width as observed by Bliven et al. was not predicted. Moreover, the direct effects of 
wind stress on the water surface were not considered and the vorticity in the shear 
current was only prescribed but not derived. A fuller account of windlwater 
interaction is desirable. 

In this paper, we shall examine theoretically how wind, blowing in the direction 
of wave propagation, affects the initial sideband instability of narrow-banded, long- 
crested waves, as well as their nonlinear dynamics at  large time. In  view of the results 
of Lo & Mei, it is necessary to include the fourth-order terms of Dysthe to initiate the 
asymmetric growth of sidebands.t Therefore we shall assume that the rate of energy 

t Even within the third-order Schrodinger theory it is possible to impose an asymmetric initial 
condition artificially. The subsequent nonlinear evolution is then likely to remain asymmetric. 
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input by wind and the damping rate are also of fourth-order importance. These 
assumptions imply a weak wind within a narrow range of intensity. Without waves, 
the basic velocity profile in air is assumed to be linear in height near the water surface 
and logarithmic high above. The wave-induced turbulent disturbance is simply 
characterized by a constant eddy viscosity. Similar assumptions are made for water. 
The value of the empirical constant in the definition of the eddy viscosity is chosen 
so that the initial growth rate of waves matches existing experimental data. 

After presenting the basic formulation in $3, we examine in $34 and 5 the air flow 
over weakly nonlinear gravity waves. The air flow is computed numerically as in 
Caponi et al. (1982) for a laminar flow over a wave surface. Next, in $6 we derive the 
evolution equation of surface gravity waves up to the fourth order in wave steepness, 
including the effect of wind-induced current in water, the wind energy input, and the 
damping of waves due to eddy viscosity. The initial growth rate and the subsequent 
nonlinear evolution of the Benjamin-Feir instability are then examined in $$7 and 
8. Tendency of frequency downshift at large time is discussed. 

Mathematically a somewhat similar problem was treated by Blennerhassett ( 1980) 
who considered a two-layered fluid in a horizontal channel bounded above and below 
by solid walls. With the upper wall moving at  a constant velocity horizontally, the 
sideband instability of the interface was studied by first deducing the evolution 
equation of the Schrodinger type. The densities of the two fluids were assumed to be 
comparable, and the flow laminar. Hence, the theory is not immediately related to 
the wind/wave problem. Recently Dhar & Das (1990) examined the initial growth 
rate of the Benjamin-Feir instability based on the fourth-order evolution equation 
of gravity waves in the presence of wind. They treated the wind as a potential flow 
and matched only the vertical velocity and the pressure at the interface. Therefore, 
their theory is relevant only to two perfect fluids. 

2. Turbulence model for air flow and water motion 
For air flow over infinitesimal waves various turbulence models have been 

proposed before (e.g. Townsend 1972). Recently Jacobs (1987) has re-examined this 
problem by using an eddy viscosity linearly varying in height above the waves, and 
has concluded that the energy input rate is insensitive to the turbulence model 
assumed. For a prescribed permanent wave with a small but finite wave slope the 
analysis is less simple. Only Gent & Taylor (1976) have solved the nonlinear 
equations of air flow using a one-equation closure model. One of their conclusions is 
that the energy input rate may decrease significantly as the wave slope increases. 
However, their calculation is rather complicated and involves some empirical 
parameters. Since our aim is to study the complex effect of wind shear on the 
nonlinear dynamics of wave instability, the following relatively simple turbulence 
model will be adopted. 

Specifically, in the absence of waves the basic shear flow in air and in water is 
log-linear with a constant eddy viscosity near the water surface. Wave-induced 
disturbances, however, are assumed to satisfy the Reynolds equations with constant 
eddy viscosity. This approach is analogous to the quasi-laminar approximation used 
by Miles (1957), Valenzuela (1976), Kawai (1979) and others for air flow over 

However, in this study we confine ourselves to the most unstable eigenmode as the initial condition 
of the nonlinear calculations, since many experimental evidences suggest that actually observable 
instability corresponds to the most unstable mode. The inclusion of the fourth-order (Dysthe’s) 
terms is then necessary to achieve asymmetry or frequency downshift. 
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gravity-capillary waves, who used a laminar kinematic viscosity near the water 
surface. Moreover the eddy viscosity in air is proportional to the air friction velocity 
u; and is defined to be 

1 
v; = EU’ -, * k  

where k is an empirical constant and k is the surface wavenumber. Primes are used 
to designate quantities associated with air. The value of k is later chosen to be 0.02 
so that the linear growth rate of surface waves matches Plant’s (1982) empirical 
formula. It will be also shown that our model gives predictions in reasonably close 
agreement with that of Gent & Taylor (1976) for a finite wave slope based on a more 
complex turbulence closure model. 

In water a constant eddy viscosity, 

(2.2) 

is introduced similarly, where u* is the friction velocity in water and k is the same 
coefficient as in air. Since 

- 1  
k V e  = KU*-, 

where p and p’ are the densities of water and air respectively, and 7, is the shear stress 
on the undisturbed interface, ve and v: are related by 

In addition to the constant k ,  the surface drift velocity U, at the horizontal 
air-water interface is another empirical parameter, which is needed if one assumes 
that the velocity in water diminishes to zero at  great depth in some manner (e.g. 
exponential). To avoid this additional parameter we follow a Cartesian coordinate 
system X ,  Y fixed with the surface drift (directed from left to right) and subtract the 
wind drift velocity U, from the total velocity observed by a stationary observer. 

In air, we asume the following linear-logarithmic velocity profile : 

(Y < 5 3  

and sinha = . 2 ~ $ ( Y - 5 5 )  Ve 

where Y is the vertical (upward) coordinate measured from the waveless water 
surface, K = 0.4 is the Karmin constant, and 5v:lu; can be regarded as the thickness 
of the sublayer of constant eddy viscosity. The superscript s stands for ‘steady ’ flow 
without waves. The profile (2.5) has been used by Miles (1957) and Kawai (1979) for 
air flow over gravity-capillary waves, if the eddy viscosity v: here is replaced by the 
kinematic viscosity v’. Inside the sublayer of constant eddy viscosity, the profile is 
linear. In  the limit of Y-+ 00, the profile becomes approximately logarithmic. 
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The induced water current profile is also assumed to be linear-logarithmic : 

( Y > - 5 3  

where 

U 

K 
= -5u ,+i (a - tanh+a)  

Both profiles are assumed to be established in air and wafer immediately after the 
onset of wind. 

3. Governing equations for wave-induced disturbances 
Let X be the direction of wind and wave propagation, and T denote time. The 

wave-induced velocities in the X, Y directions and the dynamic pressure are denoted 
respectively by U, V ,  P in wafer and U', V', I" in air. Let us also introduce the 
following normalization 

x = kx, y = k Y ,  t = (gk ) iT  

where k is the characteristic wavenumber of the free surface, g the acceleration due 
to gravity, p and p' densities of water and air respectively. For later calculations the 
following values chosen for the temperature of 20 "C are used. 

p = 0.998 g/cm3, p' = 0.001 21 g/crn3, g = 980 cm/s2. (3.2) 

The normalized governing equations in wafer for wave induced disturbances are 

with the normalized eddy viscosity 

The corresponding equations for wave induced disturbances in air are obtained 
similarly by adding primes to all dependent variables, u', ve, and 6, in (3.3)-(3.7). 
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They will be referred to as (3.3)’ to (3.7)’ respectively. Introducing the definitions of 
the eddy viscosities (2.1) and (2.2), the eddy viscosity parameters a:, and ah2 are 
related to the normalized friction velocity u i / C  as follows : 

(3.8a, b )  

where C = ( g / k ) i  is the phase velocity of surface waves. 
Note that the moving coordinates and the corresponding velocity components are 

related to the absolute stationary coordinates and the velocity components therein 
by 

fixed translating at  ud 

x ,  -+ x = Xo-UdtO 

t ,  --f t = t o  

uo -+ u=uo-ud 

vo -+ v = 21, 

Yo -+ Y = Yo 

In particular the convective derivatives are unchanged, 

au, au, au au -+ u, -+-+ u- 
at, ax, at ax’ (3.9) 

so that the governing field equations retain the same form for different velocity fields. 
On the water surface y = 6(x, t ) ,  the kinematic boundary conditions are 

- + ( u + u ~ ) ~ - v  a6 = -+((U’+utS)--v’ a6 a6 = 0 (y = C), 
at ax at ax 

(3.10) 

u+us = u/+u’g, v = v’ (y = 6). (3.11a, b )  

As for the dynamic boundary conditions on the water surface we require that the 
tangential stresses are continuous : 

1 [ z y (ay ax) aY 
au av 

a: 2-n n + -+- (nyn,-nxn,)-2-n,n, 

(Z Z) av’ aY 1 p’a‘2 au/ 
P ax 

= P [ 2 - n x n , +  -+- (nyny-nxnx)-2-nn,n,  (y = 0, (3.12) 

as me the normal stresses 

where (3.14) 

are the x, y components of a unit vector normal to the wave surface. 
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Let us now introduce a small parameter E characterizing the wave steepness 

E -= ka,,, (3.15) 

where k and a, are the wavenumber and the representative wave amplitude 
respectively. The same parameter also serves as the measure of the timescale and 
lengthscale of amplitude modulation, i.e. the width of the narrow-banded spectrum 
of the waves, thus allowing nonlinearity and dispersion to be comparable. We are 
particularly interested in the circumstances where both the eddy-viscous damping 
and the wind energy input are comparable and occur over the same timescale as the 
asymmetric evolution of the Benjamin-Feir instability, which is known to be t = 
O ( c 3 )  (Lo & Mei 1985). Similar to the case of molecular viscosity the normalized 
damping rate is of O(at), hence we set 

at = Ne3 (3.16) 
where N is a constant of O(1). 

In terms of the normalized variables the basic wind profile is 

(Y .c 5 4  u/s = s'y 

= s' [ :  bi+-(a-tanh&)] (y > 52), (3.17) 

K 

K 
where sinha = 2,(y-52), (3.18) 

and the normalized wind shear 8' is 

U/2 U;" 1 u; 
f/=*- 1 = :-. 

u;(gk)i - 2(u;/k) (gk)l  K c (3.19) 

Similarly the normalized water current profile is 

us = sy (y > -52) 

(y < -5K"), (3.20) 1 
where (3.21) 

By eliminating p and p' the normal stress boundary condition (3.13) may be 
written in terms of velocity components. Using the fact that p'/p 4 1 we shall keep 
the most important terms on the right-hand side to get 

(3.22) 

where fb is the non-dimensional normal stress due to wind, and 8' 4 1 is the 
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normalized boundary-layer thickness in air whose order of magnitude will be 
examined in $4. Details are given in Appendix A. Similarly the tangential stress 
boundary condition (3.12) can be approximated by 

(nyny-nznz)-2-nn,n, 
aY 1 

where fa is the non-dimensional tangential stress. The ratio of the tangential stress 
(3.23) to the normal stress (3.22) is 

(3.24) 

It will be shown later that the normal stress is more important than the tangential 
stress in transferring energy from wind to waves. However, the tangential stress 
component affects the phase and group velocities of water waves by modifying the 
mean shear current in water, as will be shown in $6. 

We now return to the basic assumption that the growth of the waves due to wind 
occurs in the timescale of 0 ( e 3 ) .  Recall that the dimensionless wave amplitude is of 
O(s) ,  and the wave energy is of O(e2). Since the assumed timescale for energy 
variation is O(e3),  the implied rates of energy input and attenuation must be of O(e5). 
The major source of forcing for wave growth is the product of the normal stress (3.22) 
and the vertical velocity of O ( B )  at the surface. It follows that the magnitude of the 
normal stress must be of O(e4). Therefore, we shall later choose the wind strength so 
that the right-hand side of (3.22) becomes of O(e4). In nature the wind strength can 
be quite arbitrary, but the more general situation cannot be conveniently treated 
here. 

4. Air flow over gravity waves 
In this section and the next our objective is to solve the air flow over gravity 

waves, and calculate the surface stresses imposed on waves due to wind. Since the 
effect of wind appears at  the highest order in the evolution of wave amplitude 
(fourth-order in wave steepness), it is sufficient to obtain the air flow within the 
accuracy (i.e. error) of O(e). First, the kinematic boundary conditions for air at the 
interface need to be specified, which depends on the leading-order wave motion in 
water. Although the wind strength is not yet specified, we estimate tentatively that 
the wind-induced current in water is weak (us - s = O(e)) so that the leading-order 
wave motion is not affected by the current. The validity of this estimation must be 
confirmed when we give the specific magnitude of wind strength later. Since for water 
waves the effect of air is negligible up to O(e4), the linearized results can be used to 
calculate air motion 

(4.1) y = l& ei(z-t) + * 
u = eU ei(z-0 + * y = - €1 ZA i e1/ ei(z-0 + * (4 .2a,  b )  

where A is the complex wave amplitude of O(1) and can be a function of slow 
variables in x and t .  The dimensional wave amplitude a is related to A by 

e(AI = ka. (4.3) 
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For the analysis of the air flow we set 

A = BeiD, (4.4) 

where B and D are the absolute amplitude and the phase of the complex wave 
amplitude A. We then introduce a new coordinate 

2’ = x - t + D ,  (4.5) 

which follows the phase velocity of the wave. The velocities ufs, uf remain unchanged, 
i.e. they are still measured in the frame of reference fixed to the surface drift. Then 
the kinematic boundary conditions for air motion at the interface are inferred from 
the wave solution (4.1)-(4.2) as 

U’+U‘S = u+us = d3cosx‘ ( y  = C), (4.6) 

w‘ = w = EBsinx’ ( y  = C), 
3 = EBCOSX’, 

to the leading order. With this new coordinate, the boundary conditions for air are 
independent of the short timescale t .  Thus the air flow can be treated as steady in the 
timescale o f t  = O(1). Let us introduce a stream function $‘+v where 

is the basic turbulent air flow given in (3.17), and 

(4.9) 

(4.10) 

are the disturbances due to waves. 

c, 7 defined by 
It is now convenient to introduce the following orthogonal curvilinear coordinates 

x‘ = g-eBsince-?, (4.11) 

y = ?j++cosee-?, (4.12) 

which are known to map the Stokes wave profile onto a flat surface up to O ( @ .  
Therefore, they are accurate enough in order to solve the air flow to the leading order 
in 8. The governing equation in the mapped plane for the wave perturbation may 
be derived by eliminating p’ from (3.4)’ and (3.5)’ as 

= aL2V2[(1/J)V2$’], (4.13) 

(4.14) 

where J is the Jacobian of transformation and can be approximated by 1 to the 
leading order. In  the first term the negative current - y is added because of the shift 
of coordinates according to (4.5). 
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The surface boundary conditions are inferred from (4.6) and (4.7) as 

(4.15) 

(4.16) 

In particular if the waves are immersed inside the sublayer of constant eddy viscosity 
(a < 5 4 ,  the boundary conditions are simplified as 

= - s’[(q +& cos e-q) ( -& sin g e-q)]q-o -el? sin 

= &d(EB)2sin2g--EBsing‘ (7 = 0). (4.17) 

Similarly 

x -s’&cosg+&cosg (7 = 0). (4.18) 

At  infinity we allow a finite increase/decrease of wind speed, and impose 

-- all.’ - const, -- ”‘ -0  ( 7 =  m). 
a7 w (4.19a, b) 

Note that by definition B = O(1). The magnitude of the wind shear 8’ is not yet 
specified. We now show that the nonlinear term in (4.13) is not necessarily small 
inside the air boundary layer. The dominant term on the left-hand side of (4.13) is 

which should be balanced by the dominant dissipation term 

(4.20) 

(4.21) 

on the right-hand side. Let us define the air boundary-layer thickness to be 6’. 
Referring to (3.17) the basic wind velocity near the interface is 

and the added steady current (the negative of the phase velocity) is 

(4.22) 

(4.23) 

For relatively weak wind (s’SI < O(1)) the boundary-layer thickness 6’ is estimated 
by balancing (4.20) and (4.21) with (4.23), i.e. 

6’ - (r: if 8‘8’ - du; < O(1). (4.24) 
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For relatively strong wind (8'8 2 O(1)) the balance of (4.20) and (4.21) with (4.22) 
gives 

(4.25) 

Therefore the boundary-layer thickness 8' is at most of O(aL). 
In the boundary condition (4.16) or (4.18) the magnitude of ap'/aq is of O(6.d). 

Thus the magnitude of the perturbed convective inertia relative to the linearized 
convective inertia is approximately 

6 - - 
8 

if aLs' 2 O(1). (4.26) 

In the next section, the range of s' to be chosen in our calculations is somewhat larger 
than 1, and 8' is always much smaller than O(1). Thus in both cases the ratio (4.26) 
is not neglible, and all the nonlinear terms in (4.13) must be kept. This observation 
suggests that the energy input rate from air to water through surface stresses 
depends on the wave steepness ka to the leading order, unlike Janssen's (1986) model 
in which the wave growth rate is assumed to be constant. 

Referring to the governing equation (4.13) and boundary conditions (4.15), (4.16), 
(4.19) for p' as well as the basic shear profile (3.17), the air-flow problem is controlled 
by three parameters; the shear rate 8' in air, the wave slope d3 = ka, and the eddy 
viscosity parameter c-rLz. Since both (rL2 and 8' are related to the normalized friction 
velocity u;/C through ( 3 . 8 ~ )  and (3.19), the air flow depends only on two non- 
dimensional parameters u;/C and d3. 

5. Numerical solution for the air flow 
5.1. Method of solution 

Since the governing equation and boundary conditions for the perturbation stream 
function ~' are nonlinear but steady, we can employ the spectral method used before 
by Caponi et al. (1982), who solved a similar mathematical problem with a constant 
laminar viscosity. On introducing the Fourier expansion, 

into (4.13), we obtain an infinite set of coupled nonlinear ordinary differential 
equations for fn(r). In  the actual calculation this series is truncated at n = f n , ,  and 
the coupled equations are approximated by finite differences with exponentially 
increasing separation between adjacent grid points : 

"10 = 0,"1i, "12, . . . "I, = "Imax, 

"In+l-"In = r = const > 1. (5.2) 
"In - "In-1 

The boundary conditions at 7 = 00 are applied at  7 = vmax instead: The resulting 
nonlinear coupled algebraic equations are solved by Newton-Ralphson iteration. 
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After trial and error the following values are found to be satisfactory in the 
calculations. 

nM = 6, M = 200, qmax = 7.0, r = 1.024 (5.3) 

5.2. flurface stresses and energy transfer at the interface 

The calculated result of v is now introduced to the right-hand side of (3.22) in order 
to calculate the x-derivative of the normal stress within the accuracy of O(s, r2) : 

(5.4) 

So far the numerical program is valid for any s’. We now choose the wind strength 
s’ so that the magnitude of (5.4) becomes of O(s4) as has been discussed before. For 
later convenience we formally represent the normal stress forcing by 

(5.5) % = Ne4 c p ,  ein(z-t). 

ax n 

Of particular significance is the coefficient of the first harmonic, 

which is responsible for the growth and the phase shift of surface waves. Similarly the 
right-hand side of the tangential stress boundary condition (3.23) can be calculated 
as 

Although f: is smaller than the normal stress (5.4) by a factor of 6’, as has been 
discussed in (3.24), we may also set formally 

Note that the magnitude of the first harmonic q1 is of O(s’) G 1. 
The zeroth harmonic f, of f arises as a result of nonlinearity in the governing 

equation (4.13). Therefore the magnitude off, compared to that of f l  (or qo/ql)  is 
approximately 

€ 
if a: s’ 2 O( i) ,  N -  

s’ 

based on the analysis in $4. Hence 

(5.9) 

qo - q1 - - E S ’ ~  - E S ’ ~ ;  < O(E)  if a; s/ < O(1) 

- €  if c ~ i s ’  3 0(1), (5.10) 
(3 

and in both cases q, is of O(s) or smaller. The zeroth harmonic q, is the spatially 
averaged shear stress due to the presence of waves, and may be considered as a 
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correction to the basic shear s. The effect of qo on the evolution equation of surface 
wave amplitude appears through modified water current ez0 and will be thoroughly 
discussed in $6. 

Let us calculate the energy input rate W from air to water through the normal 
stress. From (5.5), the first harmonic of the normal stressf;, is given as 

(5.11) 

By multiplying this first harmonic and the vertical orbital velocity v (4.2b), and 
taking the time average, we obtain the energy input rate 

where the overbar indicates the time average and Re ( ) the real part of ( ). The energy 
input rate through the tangential stress fk is smaller than that off;, by O(#) and is 
neglected. Since the normalized wave energy E per unit length is 

E = &21A12, (5.13) 

the normalized energy input rate /? from wind to waves is 

The corresponding imaginary part of p , / A  is also defined as 

= 2o:1m@), 

(5.14) 

(5.15) 

which is responsible for the phase shift of surface waves. 
The turbulent dissipation rate /? due to the constant eddy viscosity v, in water is 

8" = 4tT: (5.16) 

by analogy to the laminar viscous dissipation rate. Hence the net growth rate is 

p=B- ,@ = t~'(2Rep)-4]. A (5.17) 

In particular the initial linear growth rate is 

As pointed out at the end of 94, the air flow is controlled by two parameters uJC 
and & = ka. Therefore the coefficient 

(5.19) 

depends on these two parameters. Since CT; is related to u',/C by (3 .8b) ,  the growth 
rate B is also? function of u;/C and & = ka. In  the limit of 1Al = B = 0 the linear 
growth rate Po is a function of ui/C only. 
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i 

1 O-p 10-1 1 10 
U i l C  

RQURE I.  Linear grohh rate Po of gravity waves against normalized friction velocity uJC. Solid 
line, our result; ---, Plant (1982) ; A, Shemdin & Hsu (1967) ; 0 ,  Larson & Wright (1975) ; x , Wu 
et al. (1977, 1979); 0, Snyder et ul. (1981), fixed sensors; 0, Snyder et ul. (1981), wave-following 
sensor. 

Based on many laboratory and field experiments Plant (1982) has given an 
empirical linear growth rate of gravity waves, 

Po = (0.04+0.02) - , ri)” (5.20) 

fork > 0.63 cm-’ and u;/C > 0.07. Mitsuyasu 6 Honda (1982) have later shown that 
this empirical growth rate is valid up to k > 0.024 cm-l. We have found that if 

x = 0.02 (5.21) 

is chosen in the definition of the eddy viscosity (2.1), the numerical results of (5.18) 
fit the empirical curve (5.20) reasonably well for u;/C > 0.1 as is shown in figure 1. 
According to our result the growth rate deviates from (5.20) at u;/C x 0.1 and drops 
quickly, whereas the experimental results start to deviate around a lower u;/C % 

0.07. This discrepancy can in principle be removed by choosing a more complex 
turbulence model, but this is not pursued here. 

With 2 chosen, thc result of the initial growth rate shows that the energy input 
from wind and the dissipation due to the eddy viscosity are comparable if u;/C = 
O(O.l). We therefore choose three values (u;/C = 0.12,0.14, 0.16) of the normalized 
friction velocity in the later analysis of the long-time evolution of sideband 
ins ts bili t y . 
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FIGURE 2. -, Nonlinear energy input rate p; ---, imaginary part of wind forcing p ;  ---, 
dissipation rate 8” as functions of wave slope ka. (a) u‘,/C = 0.12. x , Gent & Taylor (1976), 
u J C  = 0.125. ( b )  u;/C = 0.16. x ,  Gent & Taylor (1976), u;/C = 0.167. 

In figure 2 the nonlinear growth rate p, the imaginary part of the wind forcing $, 
and the dissipation rate are plotted for u i / C  = 0.12,0.16, and for a wide range of 
wave slope ka = 04.40 including cases which exceed the limits of our theory, in order 
to speculate the trend of strong nonlinear effects. In all cases the growth rate 
decreases significantly as the wave steepness increases. This is consistent with the 
fact that nonlinearity in the governing equation for air is important to the leading 
order. In particular there exists a equilibrium wave slope ( k ~ ) ~ ~  which is still rather 
small, at  which the wind energy input and the dissipation due to turbulence in water 
cancel out. 

Gent & Taylor (1976) calculated the nonlinear energy transfer rate from air to 
water through surface pressure, by using one-equation closure turbulence model. At 
first they assumed a constant roughness along the wavy surface, and the result 
underestimates the linear energy input rate ; the nonlinear input rate depends on the 
wave steepness very weakly. They next assumed that the roughness varies along the 
surface, simulating the distribution of ripples over gravity waves, and obtained more 
reasonable initial energy transfer rate. With the second model the nonlinear transfer 
rate decreases significantly as the wave steepness increases. Clearly the second model 
is more heuristic than theoretical. Nevertheless, we compare Gent & Taylor’s second 

16 FLM 230 
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u;/c SI S 4 CTL2 

0.10 5 0.18 7 . o ~  10-5 2 . 0 ~  10-3 
0.20 10 0.35 1 . 4 ~  4 . 0 ~  
0.40 20 0.70 2 . 8 ~  8 . 0 ~  

TABLE 1.  Typical values of wind shear and viscosity parameters 

results with ours in figure 2. The good qualitative agreement of both theories suggests 
that our simple turbulence model, with only one parameter k ,  is as good as a more 
involved model in predicting the nonlinear energy transfer rate. 

We comment in passing that Jacobs (1987) solved analytically the linear energy 
transfer rate through surface pressure by assuming that the eddy viscosity is 
proportional to the vertical distance from the wave surface. His model can in 
principle be extended for a finite wave amplitude. However with his model the 
surface roughness has to be given empirically. Also he speculates that the distribution 
of the eddy viscosity may not be well described by his simple model for finite wave 
steepness. Therefore we will not examine the possibility of applying his turbulence 
model to this study. 

With the value of k determined as (5.21), we calculate from (3.8) the eddy viscosity 
parameters cr;, cr',2, and the normalized shear s' (in air) and s (in water) for typical 
values of normalized friction velocity uJC.  The results are shown in table 1. 

At the beginning of $4 we have assumed that the wind-induced current in water 
is weak: 

U S N s =  O(+ (5.22) 

Although the values of s in table 1 for u;/C = 0.124.16 are somewhat larger than 
O ( E )  as estimated, we shall find that the effect of the water shear on the evolution 
equation (namely coefficients K ~ ~ ,  K ~ ~ )  are multiplied by a small numerical factor. 
Therefore the estimation (5.22) is regarded as satisfactory in this study. Introducing 
the values of table 1 into (4.24) and (4.25), the boundary-layer thickness 8' is 
estimated to be always less than O(O.l). Therefore it is consistent to neglect terms of 
O(6')  as well as those of O(B) .  

5.3. Air flow above the waves and eflective roughness height 
We now discuss the computed air flow over surface waves. In figure 3 we plot the 
stream function contour of q + f g - y  for u;/C = 0.1, 0.2 and ka = 0.1 in the 
coordinates moving with the phase velocity of the waves. Recall that the velocity 
field of $' is not small compared with that of $" inside the air boundary layer. In 
all cases a circulation of air appears at the height where the wind speed in the fixed 
coordinates is equal to the phase velocity. The location of the circulation migrates 
from the crest to the trough as the wind speed increases. 

Note that in (4.19) the first-derivative of the perturbed air a$'/Q is allowed to be 
finite a t  7 = m. This corresponds to a finite wind velocity shift caused by waves. In  
the theory of fully turbulent shear flow over a rough plane bed, the velocity profile 
is known to be 

u ' 1 Y  - = -1n-+8.5 
U i  K ks (5.23) 

(Schlichting 1955), where k, is the equivalent surface roughness. For fixed u i ,  as the 
roughness k, increases the velocity decreases. If the waves are regarded as a surface 
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FIQURE 3. Contours of the air flow t + p - y  over surface waves. h = 0.1. Vertical scale is 
stretched by a factor of 2. (a) u;/C = 0.1, A t  = 0.02. ( b )  u’,lG = 0.2, A t  = 0.06. 

roughness, the corresponding equivalent roughness k, must be larger than that of the 
flat surface without gravity waves (k,,), and the resulting velocity defect is related 
to the finite (av/aq),,-OO as 

(5.24) 

From this relationship we can calculate the ratio k,/k,, against the wave slope ka for 
various values of wind strength uJC, as shown in figure 4. 

When wind is weak (u’,/C < O.l), gravity waves have little effect on the equivalent 
roughness. As the friction velocity increases, the roughness is magnified by waves. 
This effect becomes most prominent around u;/C = O.lf5-0.20 where the roughness 
is magnified seven times for ka = 0.20. For still stronger wind, our theory, while 
incomplete, suggests that the roughness is less affected by the presence of gravity 
waves. The absolute value of the equivalent roughness k,, without gravity waves 
cannot be easily obtained since different empirical formulae (for example Charnock 
1955; Stewart 1974 ; Jacobs 1987) give vastly different values. Therefore our 
calculated results can only be used to infer that, for given u;, the roughness k, is the 
greatest when the phase velocity of the gravity waves is C z 5u;4u; for a fixed 
wave slope. With shorter or longer waves, k, decreases. Recently, Plant (1990) has 
shown from laboratory and field data that for a given u; of 0.3-0.8m/s, the 
roughness k, is maximum in a lake (with a fetch of 1 4  km) and is smaller in the ocean 
(with a fetch of O(100 km)) or in the wave tank of O(10 m). This is qualitatively 

15-2 
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FIQURE 4. The ratio of equivalent roughness k, over gravity waves to  that on a flat surface k,, 
as a function of wave slope ka for different values of normalized friction velocity u;/C. 

consistent with figure 4. In particular for u; = 0.8 m/s the surface roughness 
becomes maximum around the phase speed of C = 4-5 m/s according to figure 4, the 
corresponding wavelength is 10-16 m, which is the typical wavelength in a lake. 

6. Wave motion in water 
6.1. Boundary-layer correction 

In this section we will examine the wave motion in water up to O(e4) in order to 
obtain the long-time evolution equation of wave amplitude A. The motion associated 
with waves is simply governed by the vorticity equation with a constant eddy 
viscosity. By eliminating the pressure p from (3.4) and (3.5), the governing equation 
is obtained as 

where = O(1) is the wave-induced disturbances defined by 

and 

is the basic water current of O(a) given by (3.20). The kinematic boundary condition 
at  the surface (3.10) is 

a($T+II.")at - 
--+€ -+- - 0 ( y  = By), 
at ay ax ax 
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where 6 =  €[ (6.5) 
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is the wave surface. The normal stress condition (3.22) with (5.5) reads 

= Ne3xpneincz-t)+O(e4) (y = e[) .  
n 

The tangential stress boundary condition given in (3.23) can be combined with (5.8) 
to yield 

where the right-hand side is of O(8'). Recall from (4.2a, b) that the leading-order 
wave motion is 

which satisfies (6.6) but not (6.7) to the leading order. Therefore it is necessary to 
introduce a boundary-layer correction. From the balance of time derivative term and 
the dissipation term in (6.1), the thickness of the boundary layer is estimated to be 
O ( 2 ) .  Among the terms on the left-hand side of (6.7), the dominant term in the 
boundary layer is a2$T/ay2 which must be in the same order as the wave motion (6.8) 
of O(1). This balance is achieved if the boundary-layer correction of $T is of O(e3). We 
therefore set 

where $ denotes the outer solution and $B the boundary-layer correction. 

the same equation (6.1) as $T: 

(6.8) $ T -  
- I t  eY el(2-t) + *, 

$T = $+"3$By (6.9) 

Outside the thin boundary layer, $B = 0, hence the outer solution $ must satisfy 

Since the boundary-layer thickness of O(d) is smaller than the wave amplitude of 
O ( E ) ,  it  is necessary to introduce a vertical coordinate measured from the free surface : 

(6.12) 

and set (6.13) 
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Then the governing equation (6.11) may be simplified to 
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(6.14) 

The tangential stress boundary condition (6.7) is now rewritten, within the accuracy 
of O(s,iY), as 

(6.15) 

Introducing the leading-order outer solution (6.8), the boundary condition for the $B 
is obtained : 

(6.16) 

where the right-hand side appears because the leading-order outer solution in water 
also gives rise to non-zero tangential stress at the surface. The solution of (6.14) 
which vanishes at z j  - - 00 and satisfies (6.16) is 

(6.17) 

Introducing (6.9) and (6.17) into (6.4) the kinematic boundary condition for the 
outer solution $ on the free surface is obtained: 

Note that the right-hand side is a displacement effect due to the boundary layer 
correction ZlrB. 

Similarly the normal stress boundary condition for $ can be worked out from (6.6) 
to be 

; ,a($+p) 8- a$a2($+p)-NE3V2-  a$ 
ay at ay ayax ax ay2 aY 

(6.19) 

where the effect of y2B is at most of O(e4) and is neglected. 
In summary, the tangential stress due to the leading-order outer wave motion 

introduces a boundary-layer correction $B, which in turn modifies the surface 
kinematic boundary condition (6.18) for the outer solution $ as a displacement 
thickness. The normal stress due to wind appears as direct forcing on the right-hand 
side of the boundary condition (6.19). Consequently both normal and tangential 
stress conditions affect the outer solution $, hence contribute to the evolution 
equation of the wave amplitude A .  

In the tangential stress boundary condition (6.7) the effect of wind-induced stress 
(qn) appears at the next order O(&, 6). The fluctuating parts (q,,, n 4= 0) introduce 
boundary-layer corrections similar to kB, whose displacement effects in (6.18) are a t  
most O(c3iY, e4) and are neglected. On the other hand, it will be shown in $6.3 that the 
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mean tangential stress qo induced by wind and the mean tangential stress induced by 
waves at the same order modify the basic wind-induced shear s, and introduce in 
water an additional mean current $ 9 ;  which affects the phase and the group 
velocities of water waves. 

6.2. Perturbation analysis of outer solution 
We now start from the governing equation of the outer solution $ (6.10), and the 
kinematic and the normal stress boundary conditions (6.18) and (6.19). The motion 
associated with waves should decay in deep water, hence 

$ = 0, y = - CO. (6.20) 

Since the left-hand sides of the surface boundary conditions (6.18), (6.19) are 
functions of $ and v which change vertically on the scale of the wavelength, they 
can be expanded in Taylor series around y = 0. (Although the vertical scale of the 
linear-logarithmic profile can be locally smaller than the wavelength, we employ 
the Taylor expansion including p. This will be justified when we find in (6.75) that 
the effects of the wind induced current on the evolution equation (through 
coefficients K~~ and K ~ ~ )  are numerically small.) The following multiple-scale 
expansions are then introduced so that a t  each order the evolution equation of the 
wave amplitude A is obtained for corresponding time and spatial scales: 

(6.21) 

where $,, cfl depend on x, xl, x2,. . . , y, y17 y,, . . . , and t ,  t,, t,, . . . , with x, = enx etc. 
Introducing (6.21) into the governing equation and boundary conditions we obtain, 
at each order, perturbation equations of the general form: 

a$,- 
at 

V2- - Fn, 

-+- = G,  (y=O),  
at ax 

ayat ax 
-+- a2$n X n  = H, (y = O ) ,  

$ n = O  ( y = - a ) ,  

for n 2 1, where the forcing terms F,, G,, and H, are functions c 
solutions. Expanding further in harmonics of progressive waves 

we obtain from (6.22)-(6.25) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

lower - order 

(6.26) 

(6.27) 
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- imc,, + im$,,, = G,, (y = 0) (6.28) 

-im- + imc,, = H,, (y = 0) (6.29) 

$,, = 0 (y = -00) .  (6.30) 

a Y  

At n = m = 1 the leading-order solutions $11 and Cll satisfy the homogeneous 
governing equation and boundary conditions and have been obtained in (4.1), (6.8) 

$11 = &l e", c,, = $4. (6.31 a ,  b )  

Application of Green's identity to $11 and $nl for n 2 2 gives 

which is a solvability condition for $,,: 

(6.33) 

Calculations of the forcing terms in (6.27)-(6.29) have been performed by 
MACSYMA, a symbolic manipulation program. At  n = 2 the forcing terms are 
calculated to be 

(6.34) 

(6.35) 

Q 2 2 -  - - L A 2  2 (6.36) 

The solvability condition of $21 yields 

hence 

where 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

This is the evolution equation of A in the timescale oft, = st. The third term in (6.41) 
is a Doppler effect resulting from the basic wind induced current fP and affects the 
phase velocity of surface waves a t  O(s). 
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The complete solutions at  this order are 

$22 = 07 

c20 = 620(xp 5 2 ,  . . * 7 t , ,  t , ,  . . .I,  
6 2 1  = 09 

622  = ;A2, 
where goo( y )  is an inhomogeneous solution governed by 

with boundary conditions 
goo = 0, y = 0, -0. 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

Although an analytical solution is in principle trivial, the solution of goo(y) is 
obtained numerically for the induced current II." prescribed in (3.20). Note that K~~ 

defined by (6.42) can be rewritten in terms of g,(y) : 

(6.51) 

6.3. Effect of mean surface tangential stress 
In  (5.10) it has been shown that the spatially averaged surface shear stress is 
modified by qo of O(E) ,  which is the consequence of the nonlinear interaction between 
wind and waves. The leading-order wave motion (6.8) also introduces a non-zero 
mean tangential stress at the same order O(s).  Therefore the mean current in water 
has to be modified accordingly. This modification appears as a part of the stream 
function $20, since it is one order higher than the basic current p. 

Introducing the leading-order solution (6.8) and (4.1) into the tangential stress 
boundary condition (6.7), and taking the average with respect to x (or t ) ,  we obtain 

= 2slA)2+q0+O(s2) ( y  = &), (6.52) 

where the overbar denotes time or spatial average. On the right-hand side are the 
mean surface shear stresses due to wave motion (first term) and due to wind (second 
term). Since the surface shear qo is the result of the nonlinear interaction between 
surface waves and wind, it is a nonlinear function of wave amplitude once the 
wind strength u;/C is prescribed. It can be inferred from the evolution equation 
(6.41) that 

14 = 14 ( x 1 - $ 1 , 2 2 ,  5 3 ,  * * .  , t , ,  t,, - * .I, (6.53) 

because K~~ only affects the phase of the complex wave amplitude A. Therefore the 
forcing qo may be written as 

q0 = qo(lAl) = QO("l-&17 x 2 >  x 3 ,  . . . 3 t 2 ,  t3>  . . -1. (6.54) 
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For convenience we set 
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2elAI2+qo = e[q'(x1-&, 2 2 1  2 3 ,  . * ,  t2, t3, . . .) +q(x2, x3, . . ., t2, t3, * .)I, (6.55) 

where eq is the average of the left-hand side over x1 or t , .  
Let us first discuss the effect of the fluctuating part q'. Since it depends on the 

timescale t,, the resulting induced current (denoted by $9') also depends on t , .  From 
the balance of the time derivative and dissipative terms in (6.10), $g' must decay on 
the lengthscale of JyI = O(e) ,  which is comparable to the wave amplitude. Therefore 
+q' is also a boundary-layer correction along the wave surface, similar to $B. The 
magnitude of $9' is estimated to be O(e3) since its second derivative in y is O ( E )  at the 
surface. We have shown in $6.1 that the boundary correction $B induces a finite 
vertical velocity a$,/ax at the interface and modifies the surface kinematic 
boundary condition (6.18) of the outer solution $. Although $g' is comparable with 
$B in magnitude, its vertical velocity is smaller by O(e) since it is independent of 
short scale x .  Therefore the effect of $9' can be neglected in our analysis. 

The remaining part q depends on t , ,  t3 and longer timescales. However, we will later 
solve the wave amplitude IAl as a function of 7 = e2t. Therefore the induced current 
$9 resulting from q is also a function of T. Let $20 be further written as 

$20 = $%,, x3, - .  * 9 y ,  TI+  320( .1 ,  x2, - - 9 Y1,  Y 2 ,  * f - 9 t , ,  t,, . . -1, (6.56) 

where $,, is shown in Appendix B to be the inviscid wave-induced current. The 
governing equation of $9 is a diffusion equation inferred from (6.10) : 

(6.57) 

where the inertia terms are not important because the forcing q is independent of x 
or x,. The surface boundary condition for $g is 

from (6.52) and (6.55). We also impose at  infinity 

y = - m .  $ Q - - 0, 

The solution of (6.57)-(6.59) is simply 

(6.58) 

(6.59) 

(6.60) 

This $9 is a modified mean current in water and is a part of $20. We stress that $9 

can be solved only after the history of q (hence that of IAI) is numerically calculated. 
In summary, to satisfy the tangential stress boundary condition (6.7) to the 

desired order requires the introduction of the boundary-layer correction $B, and the 
modified current $9. The effect of $* is to add a displacement in the kinematic 
boundary condition of outer solution. The modified current $9 is a part of the outer 
solution $20 and acts as the modification to the basic current p. 

6.4. Evolution equation for water waves 

The perturbation analysis can now be continued for n = 3 and 4. While the analysis 
is similar to existing theories without wind, the details are much lengthier, and are 
sketched in Appendix B. The solvability condition (6.33) is used to obtain the 
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evolution equation of wave amplitude A at successive order up to O(e4). The results 
are then combined to yield the equation which is valid up to s3t = O(1) : 

+ s2&t2 - + s2i re) - A + s22NA - s2Npl = 0. 
3x1 1 rl-0 

(6.61) 

In the first square bracket K~~ and K~~ are the modifications of the group velocity due 
to the basic induced current p, and K , ~  is due to the modified current $q given in 
(6.60). Similarly, modifications of the phase velocity appear in the second square 
bracket, where K ~ ~ ,  tcZO, and K~~ are due to p, and K ~ ,  and K ~ ,  are due to $-“. The effect 
of on the linear dispersion 
( K ~ ~ )  and on the nonlinear dispersion ( K & ~ )  are also present at O(e2). All the coefficients 
( K )  are defined in Appendix B. 

also appears in K ~ ~ .  The effects of the basic current 

For later convenience we rewrite the wind forcing term formally as 

-s2Npl = -e2N($+i,9)A, (6.62) 

where (6.63) 

(cf. (5.14) and (5.15)). The factor t appears because /F is the growth rate of the wave 
amplitude A whereas the growth rate was defined for the wave energy of O((AI2). 
The coefficients $ and ,9 are both of O(1) and are real nonlinear functions of wave 
slope ka = ~1.41 and the normalized friction velocity u ; / C ,  calculated numerically in 
$5. We stress that the explicit dependence of the coefficients $, on the wave 
steepness ka must be kept for consistency, since the nonlinearity in the air flow is not 
negligible to the leading order in s. The real part $ and the imaginary part p are 
responsible for the growth and the phase shift of the wave amplitude respectively. 
Note that if we neglect all K and set N = /F = p = 0, Dysthe’s evolution equation is 
recovered. 

The wave induced current $,,(x,, y, ,  t l )  appearing in (6.61) is governed by the 
Laplace equation in long scales: 

with boundary conditions 

(6.65) 

and $20 = 0 ( y ,  = -00).  (6.66) 

Equation (6.61) together with (6.64)-(6.66) constitute the coupled evolution 
equations of the wave amplitude A and the wave induced current $20 up to 
s3t = O(1). 
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The second and third terms of (6.61) can be eliminated by defining the modified 
phase velocity E and group velocity Eg due to the wind induced current : 

E =  1+EC=,  

with c" = K ~ ~ + E ( K ~ ~ + K ~ ~ )  + E ~ ( K ~ ~ + K ~ ~ + K ~ ~ ) + o ( E ~ ) ,  (6.67) 

and E - -  = ~ + ~ K 1 0 + s ~ ~ ~ l l + ~ ~ 0 ~ + ~ ~ ~ 3 ~ ,  (6.68) 

and introducing the following trmsformations 

A = A([, 7) exp [ - i r1 Zdt,], 

6 = x1-r1Egdtl, 7 = st,. 

(6.69) 

(6.70a, b)  

Equation (6.61) is simplified to 

where K ~ ~ ,  K ~ ~ ,  defined by (B 52) and (B 55) in Appendix B, are functions of the basic 
shear p, and 1(F, are functions of the wind strength and the wave amplitude 1x1. 
The governing equations for $,, become 

(6.72) 

(6.73) 

$,, = 0 (yl =-a). (6.74) 

Note that the effect of the modified current $q appears only in the phase velocity E 
and the group velocity Eg. As far as the evolution equations (6.71)-(6.74) are 
concerned, only the effects of the basic shear @ appear through K~~ and K ~ ~ .  

As in the study by Lo & Mei (1985), the fourth, the fifth, and the sixth terms in 
the evolution equation (6.71) are asymmetric in 6 and all the other terms are 
symmetric. An initially symmetric profile of 2 will not remain symmetric over the 
timescale of M = O( 1). 

We now examine the coefficients K~~ and K~~ which affects the dispersion of the 
wave amplitude 2. They are proportional to the basic wind induced current and 
calculated numerically (see Appendix B, equations (B 52), (B 55)) to be 

EKBO = -0.03378, 
E K ~ ~  = -0.1303s. 

(6.75) 

Both E K ~ , ,  and E K ~ ~  are the products of the normalized wind shear s and a small 
numerical factor. 

In principle, the coefficients K ~ ~ ,  K ~ ~ ,  K ~ ~ ,  in the phase velocity (6.67) and K ~ ~ ,  K~~ in 
the group velocity (6.68) can also be calculated from p". To solve for the coefficients 
K ~ ~ ,  K ~ ~ ,  K , ~  we need the information of +q, hence that of the modified surface shear 



Frequency downshift in narrowbanded surface waves 455 

qo which depends in turn on the history of the wave amplitude 121. Therefore they can 
be obtained only after the nonlinear evolution equations (6.71)-(6.74) are solved for 
A“ as a function of 7.  We also note that to calculate the phase velocity c“ up to 0 ( e 3 ) ,  
/cOZ has to be obtained, which depends on the higher-order analysis of air flow. 
Fortunately, we need not pursue these coefficients here because the evolution of the 
wave amplitude IAI = 121 in terms of 6 and 7 (cf. (6.69)) can be solved without the 
information of the phase velocity 6 or the group velocity Eg. Equation (6.60) is not 
evaluated numerically. 

7. Initial growth rate of Benjamin-Feir instability 
7.1. Initial growth rate 

In the previous sections the evolution equations (6.71)-(6.74) have been derived, and 
the coefficients K,,, K ~ ~ ,  $, p have been computed for various wind conditions. We 
now study the modulational (Benjamin-Feir) instability of a uniform wavetrain 
based on these results. 

Uniform wavetrain 
By setting a/a6 = 0 in (6.71), we obtain 

Let 

where B and b are the amplitude and the phase of the complex wave amplitude A”. 
Then the real part of (7.1) gives 

i3B - -N/F(B) -2 ]B  = 0, 
a7 

(7.4) 

and the imaginary part 

(7.5) 
a i j  
a7 - - + ( t + t ~ ~ ~ ) B ~ - d V p ( B )  = 0, 

where $ and /3 are nonlinear functions of B known only numerically. Equation (7.4) 
solves the evolution of the absolute wave amplitude B. In particular, B only changes 
over the timescale of ~7 = t,. The result is then introduced in (7.5) to obtain the phase 
b 

b = [ ( ~ + ~ ~ ~ , ) B ~ - d p ( B ) ] d 7 + 8 ( ~  = 0). I 
We now define a, to be the dimensional amplitude of the initial wavetrain. Then from 
our definition of E (3.15), 

With moderate wind, B eventually approaches to Be, where the wind energy input 
balances the dissipation due to turbulence in water (i.e. Be, is the solution of 
$(B) = 2 ) .  For stronger wind, B continues to grow since the wind input always 
surpasses damping. If the wind is so weak that the initial linear growth rate is smaller 
than the dissipation rate, B gradually decays to zero. 

@ I =  B = 1, when 7 = 0. (7.7) 
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Benjamin-Feir instability 

Let K = ~ , ( i  +A‘), $,, = $;,, (7.8) 

where A, is the uniform wavetrain solution, and A‘, &, are small perturbations. 
Introducing (7.8) into (6.71) and neglecting the terms of O(A’)2, we obtain the 
linearized equation of A’ : 

and the long wave perturbation $io is governed by 

(7.10) 

$;, = 0 (yl = -0). 

Let A‘ be separated into real and imaginary parts 

A’ = Br+iBi. 
Then the real part of (7.9) gives 

(7.12) 

(7.13) 

(7.14) 
and the imaginary part gives 

In the initial growth stage of the disturbances, A, is assumed to be approximately 
constant with unit magnitude, since it is a function of M = t,. Therefore we may 
introduce 

where K > 0 is the wavenumber of the disturbances, and 0 is the complex frequency. 
From (7.10)-(7.12) the solution of &, is obtained as 

&O = -brexP (KY,)exp [i(KE--S27)I, (7.17) 

B r r  = b ei(Kb-QT) 3 B i -  - b ie  I(Kb-RT) 3 (7.16a, b )  

and (7.18) 
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FIGURE 5. Instability growth rate Im (a) as a function of wave number K for various values of 
normalized friction velocity u;/C. E = 0.1. -, Linear-logarithmic current profile ; --, linear 
current profile in water. 

Introducing (7.16) and (7.18) into (7.14) and (7.15) we obtain two homogeneous 
algebraic equations for b, and b,: 

-iQ+&i&+i'ji&+#i&-fl b , + [ ( i + ~ ~ ~ , ) K 2 ]  b, = 0 ,  (7.19) 

+ (-isZ+&idP+i'ji&-~iflK) b, = 0, (7.20) 

for which a non-trivial solution exists only when 

or 

to the accuracy of O(a).  For instability Im (Q) > 0. 

recovered : 
In the case of no wind or damping (N = = = K~~ = K~~ = 0), Dysthe's result is 

Q = +.P+$K+(&K4-1@P++dP)t. (7.23) 

7.2.  Discussion of results 

In  figure 5 we plot the initial growth of an unstable disturbance for a fixed wave slope 
E = 0.1 and for various wind speeds u;/C = 0, 0.1, 0.2 by solid lines. The instability 
is slightly suppressed as the normalized friction velocity increases. We have also 
assumed other profiles for the wind-induced water shear and have found that the 
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u;lc k (cm-') r, W) &-If 
0 0.161 0.219 0.497 0.157 
0.217 0.146 0.203 0.296 0.159 
0.286 0.142 0.210 0.275 0.163 
0.316 0.140 0.214 0.267 0.166 

TABLE 2. Instability growth rate and relative modulational frequency 

initial growth rate can be quite different, since the term K~~ in (7.22) changes 
significantly for different current profiles. For example, if the profile is linear instead 
of linear-logarithmic, the instability is then greatly enhanced as is also shown in 
figure 5 by broken lines. Li et al. (1987) also found a similar trend with the same linear 
current profile when wind was relatively weak, although they assumed much 
stronger wind and neglected the direct effects of surface stresses due to wind. We 
have also examined an error function profile which is the exact solution of the 
Reynolds equations with the constant eddy viscosity. The effect is then to suppress 
the instability even more strongly. Based on these observations, precise knowledge 
of the induced turbulent current is essential to estimate the growth rate accurately. 

7.3. Comparison of theory with available experimental data 
Bliven et al. (1986) studied experimentally the growth rate of Benjamin-Feir 
instability of mechanically driven waves under the influence of wind. For the initial 
wave steepness E x 0.22 and the wave frequency f = 2 Hz, the instability growth rate 
is reduced significantly when uJC is increased from 0 to 0.43. They also found that 
the bandwidth of the frequency modulation is increased. Since their measurements 
give instability growth rates in space rather than in time, it is necessary to translate 
our calculated time growth rates into spatial growth rates for comparison. Note that 
our theory was constructed in the frame of reference following the surface drift 
velocity ud which was left undetermined. Now for comparison with experiments, it 
is necessary to give a specific value of ud. Unfortunately, the surface drift was not 
measured in Bliven et al. We therefore estimate it by using Wu's (1975) empirical 
formula 

U' 

C ud = 0 . 5 5 2 .  (7.24) 

This surface drift modifies not only the group velocity Zg but also the phase velocity 
c" according to 2nf/(gk)i=c"+ud. As a result, the actual wavenumber in the 
experiments is slightly decreased by a factor of l / ( c"+~ , )~  compared with the value 
calculated by Bliven et al. from only the leading-order dispersion relationship. We 
first estimate the actual wavenumber k for each case of their experiments as shown 
in table 2. The dimensional spatial growth rate f is then given as 

(7.25) 

Once the maximum growth rate I', and the corresponding disturbance wavenumber 
KM are solved, the relative width of the frequency modulation Af/f can be calculated 
as 

(7.26) 
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Fetch (m) 

FIGURE 6. Ratio of frequency spectrum of sidebands to that of fundamental frequency aa functions 
of fetch. 0,  upper sideband; x , lower sideband (Bliven et al. 1986) ; -, Our calculation. Resdta 
for u;/C = 0.217, 0.286, 0.316 are shifted by lO- l ,  respectively. 

The phase velocity c" and the group velocity Eg may be approximated by 

(7.27) 
u/ 
C 

c"=  ~ + E K ~ ~  = 1-0.1848~= 1-0.3221, 

(7.28) 

(cf. (6.67) and (6.68)), where K~~ and K~~ are calculated from (6.51) and (B 34) using 
our basic linear-logarithmic current profile (3.20). 

The numerical results of r, and Aflf are shown in table 2 for the four experiments. 
The values of the initial wave steepness E are determined from the wave amplitude 
data at the first wave gauge (fetch 4.29 m) and our estimated wavenumber k. 

We estimate the ratios of the frequency spectrum of the upper and lower sidebands 
to that of the fundamental frequency from figures 1 and 4 of Bliven et al. and plot 
in figure 6 as functions of fetch. The growth rates based on our calculations are also 
shown by solid lines. Both results clearly indicate the suppression of the sideband 
instability due to wind. The agreement between them is fair, although the wave 
steepness and the wind strength are both slightly beyond the validity of our theory. 

U! 

C 
Cg = O . ~ + E K ~ ~  = 0.5-0.12219 = 0.5-0.213>, 
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In  the experiments the relative modulational frequency Af/f (i.e. the separation 
between the sidebands) increases from 0.15 to 0.28 as the wind increases from 
u;/C = 0 to  0.316, whereas our calculation gives a much slower increase from 0.157 
to 0.166. The reason of this discrepancy is not clear. We have also examined the linear 
water current profile. The instability growth rate then increases by 200% with the 
strongest wind, which is qualitatively opposite to the experimental results. Therefore 
the log-linear current profile is kept for the remainder of this paper. 

Finally, we comment on the effect of the eddy viscosity v, in water on the initial 
growth rate. When v, is decreased, both the instability growth rate and the 
separation of the two sidebands are significantly reduced to the strong wind-induced 
current (large s), resulting in poorer agreement with the experiments. On the other 
hand, the initial instability is relatively insensitive to  the increase of the eddy 
viscosity because the Doppler shift by the surface drift ud remains the same and 
dominant. Note, however, that the linear wave growth rate due to wind (figure 1) is 
reduced by larger eddy viscosity and further deviates from the experimental data for 
a relatively weak wind (around uL/C = 0.1). These facts suggest that  our choice of 
the constant eddy viscosity v, is appropriate a t  least in order of magnitude. 

8. Nonlinear evolution of instability 
I n  this section we shall examine the long-time evolution of the Benjamin-Feir 
instability under wind, where relatively small wave amplitude and weak wind are 
chosen so that the effect of breaking is insignificant. 

8.1. Numerical method of solution 
Starting from the initial growth rate in $7 we now examine the nonlinear evolution 
of Benjamin-Feir instability by solving (6.71)-(6.74) numerically. First, the least 
stable wavenumber K and the corresponding L? are obtained from (7.22) for 
prescribed initial wave slope B and normalized friction velocity .;/I?. The result is 
then introduced to  (7.19) or (7.20) to  calculate b,/b,. The initial condition of the 
disturbance A' at r = 0 is then 

Although lb,l has been assumed to  be infinitesimal in $7,  we now set 

so that the maximum of IA'I is 0.1. The computed initial condition for a is then 
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If the initial amplitude of the disturbance is reduced, the initial growth is delayed but 
the subsequent evolution remains similar. 

The pseudo-spectral method for solving (6.71)-(6.74) is identical to that of Lo & 
Mei (1985), where the nonlinear part is integrated in the physical domain and the 
linear part in the frequency comain. Let us introduce M = 2m (m = integer) equally 
spaced grid points between 5 = K5 = 0 and 5 = 27r : 

- - -  - 
and define A, A(5 = 5,). (8.5) 

The Fourier transform of 2 is given as 

and the inverse Fourier transform as 

M-1 ;M 

2, = B,exp(i&) = 2 B,exp (iv5“,). 
v-0 v--+M+l 

We separate (6.71) into linear and nonlinear parts. First, the nonlinear part is 
integrated by the modified Euler scheme in the physical domain, then the linear part 
is integrated exactly in the Fourier domain. In  the next timestep the linear part is 
calculated first and the nonlinear part second. In this manner a global accuracy of 
O ( A T ) ~  can be achieved. To avoid aliasing errors due to nonlinearity, we use twice the 
number of points in the linear integration, as is suggested by Lo & Mei (1985). 

As the integration proceeds, we have found that one particular high harmonic is 
excited and the profile of 161 becomes highly oscillatory with the corresponding 
frequency. This happens because the 5-derivatives (a2/at2, a3/i3p) of the high 
harmonic become quite large and may balance with the lower-order terms which 
should be O(l/e) times larger. In the evolution equation (6.71), the following two 
terms, 

‘ 1  a2A 1 a 3 2  + ‘(g+ €K30) -- €--, ap i6a53 

become dominant, which corresponds to 

$M 

[ +i(~+e~~~)(i~K)~B,-e&(ivK)~B~]e~”~ (8.9) 
w--$M+l 

in the Fourier domain. These two terms are comparable when 

-(i)(VK)B+€&(vK)3 x 0, (8.10) 

or (8.11) 

Thus the dominant harmonic has a high frequency of 0(1/e). To overcome this 
difficulty we include a higher-order dispersive term a42/i354 which is otherwise of 
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~ Q U R E  7.  (a) Time evolution of lowest 5 Fourier components (PJ, u = 1 , O )  of wave amplitude 
A .  u;/C = 0.12, E = 0.070, K = 1.81, A7 = 0.0026. ( b )  Amplitude spectrum of wave amplitude A at 
7 = 90. u;/C = 0.12, E = 0.070. Circles are spectrum at 7 = 0. (c) Time evolution of IAI. u;/C = 
0.12, E = 0.070. 
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@WJRE 8. (a) Time evolution of lowest 5 Fourier components (WJ, v = f 2, f 1,O) of wave amplitude 
A .  u;/C = 0.12, E = 0.044, K = 1.88, A7 = 0.001. (b)  Amplitude spectrum of wave amplitude A at 
7 = 40. u;/C = 0.12, E = 0.044. Circles are spectrum at 7 = 0. (c) Time evolution of M]. u;/C = 
0.12, E = 0.044. 
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0 ( e 2 )  in the asymptotic equation (6.71). The coefficient of this term may be obtained 
as 

(8.12) 

from the linear dispersive wave theory. With this term the dominant derivative 
terms are 

or 

(8.13) 

in the Fourier domain. These three terms would cancel one another only if 

- (i) (uK)2 + €&( uK)3 - E2& vK)4 z 0, (8.15) 

which does not have a real solution. Hence no high harmonics will be numerically 
excited. 

8.2. Results and discussions 

Lo & Mei (1985) have calculated the long-time evolution of the Benjamin-Feir 
instability according to Dysthe’s equations without wind or damping. They have 
found that a recurrence pattern known in the lower-order Schrodinger equation is 
still preserved. Near the peak of the modulation the lower sideband becomes slightly 
larger than the upper sideband, indicating a temporary downshift of frequency. 
However, the recurrence is nearly periodic ; the downshift disappears later and the 
spectrum goes back to the original. 

We now examine three different wind strengths, u i / C  = 0.12,0.14, and 0.16 (9’ = 
6, 7 and 8). 

8.2.1. uJC = 0.12 

examine two different initial wave slopes B = 0.070 and 0.044. 

Case (i) E = 0.070 
Referring to (3.15) and the value of the viscosity parameter cr: in table 1, the 

normalized dissipation coefficient N is calculated to be N = 0.24. By definition (4.3) 
the equilibrium wave amplitude should be 1.41, = B ,  = (ka),/a = 1.22. In  figure 
7 (a) the evolution of the zeroth, f lst, +2nd harmonics (lBol, 1B*J, Pk21) are shown 
for r = (r90. A t  the beginning a quasi-recurrence pattern is observed as in the case 
of Dysthe’s equation ; the lower sideband ( - 1st harmonic) outgrows the upper side 
band (+ 1st harmonic) near its peaks. However, as the evolution proceeds the 
magnitude of all but the -1st harmonic gradually decays, and at  7 = 90 the peak 
wavenumber is clearly downshifted to the - 1st harmonic, implying that there is now 
a monotonic downshift of frequency peak with time. 

In figure 7 ( b )  the amplitude spectrum of the harmonics ( P J ,  11 = - 10 to 10) is 
plotted at r = 90. The initial spectrum is also indicated by circles. There appears a 
single peak at u = - 1, and all the other harmonics are relatively small. We also show 
in figure 7(c) the evolution of the wave amplitude profile 1x1. The strong recurrent 
modulation in the initial stage gradually gives way to the almost steady superposition 
of the f 1st harmonics. 

As indicated by figure 2 (a), the net growth rate becomes zero a t  (ka),, = 0.085. We 

(N = 0.24) 
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I?IGURE 9. (a) Time evolution of lowest 5 Fourier components (PJ, v = f 2, f 1 , O )  of wave amplitude 
A .  u;/C = 0.14, E = 0.092, K = 1.73, AT = 0.001 67. ( b )  Amplitude spectrum ofwave amplitude A at 
T = 50. u;/C = 0.14, E = 0.092. Circles are spectrum at T = 0. 

Case (ii) e = 0.044 
Next we examine the case of a smaller initial wave amplitude. By definition Be, is 

now 1.95. Hence the magnitude of the uniform wavetrain will gradually approach 
1.95 times the original if the unstable sideband disturbances are not introduced. 
From the analysis of $7,  we find that the dimensional wavenumber of the sideband 
instability is roughly proportional to the amplitude of the uniform train. Referring 
to the instability diagram, figure 5, the sideband disturbance of wavenumber up to 
1.3-1.4 times that of the least stable mode is unstable at 7 = 0. Therefore, for large 
7 the maximum dimensional unstable wavenumber will be roughly 2.5-2.7 times that 
of the original least stable wavenumber. In our calculation with discrete Fourier 
series it may be expected that the Fourier components of the wavenumber twice that 
of the initial disturbances (Bk2)  will also become unstable for large 7.  

The time evolution of the lowest 5 harmonics are plotted in figure 8(a) .  In the 
initial stage (7 < 15) a quasi-recurrence pattern is evident and the - 1st harmonic 
slowly grows as in the former case. However, for larger time the evolution pattern 

(N= 1) 
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FIQURE 10.J~)  Time evolution of lowest 5 Fourier components (PJ, v = +2, fl, 0) of wave 
amplitude A,. U J C  = 0.14, c = 0.069, K = 1.81, AT = 0.00094. (a) Amplitude spectrum of wave 
amplitude A at T = 45. u i / C  = 0.14, E = 0.069. Circles are spectrum at T = 0. 

becomes more chaotic and the -2nd harmonic gradually overtakes the other 
harmonics to become dominant. 

The plot of the final amplitude spectrum figure 8 ( b )  at T = 40 clearly shows the 
downshift of the peak wavenumber to v = - 2, although some of other harmonics are 
also not small. This is again clear evidence of the permanent frequency downshift. 
The profile of the wave amplitude IA"I in figure 8(c)  also shows a rather chaotic 
evolution pattern for 7 > 15. 

8.2.2. u;/C = 0.14 

e = 0.092 and 0.069 are examined. 

Case (iii) 8 = 0.092 
The time evolution of the lowest 5 harmonics is plotted in figure 9 (a) ,  and the final 

amplitude spectrum in figure 9(b). As in case (i) the -1st harmonic gradually 
becomes dominant, although the other harmonics do not decay as quickly as in case 

We now examine a slightly stronger wind. Again two different initial wave slopes 

(N = 0.125) 
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FIQURE 11. _(a) Time evolution of lowest 5 Fourier components (PJ, u = f 2 ,  f 1 ,  0) of wave 
amplitude 4. u;/C = 0.16, E = 0.120, K = 1.64, AT = 0.0026. ( b )  Amplitude spectrum of wave 
amplitude A at T = 75. u;/C = 0.16, E = 0.120. Circles are spectrum at T = 0. 

(i) and quasi-recurrence persists for a much longer time. The amplitude spectrum at 
T = 50 again shows the tendency of a monotonic frequency downshift. 

Case (iv) e = 0.069 
The results are shown in figure 10 (a, b). After a slow start, owing to a small initial 

wave amplitude, the evolution accelerates and becomes quite chaotic, although the 
- 2nd harmonic clearly becomes dominant toward the end. The amplitude spectrum 
at T = 45 also shows a peak at v = -2. 

8.2.3. u;/C = 0.16 

slope e = 0.120 and 0.072 are examined. 

(N= 0.30) 

From figure 2(b) the equilibrium wave slope is now (ka)w = 0.168. Initial wave 
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F’IGURE 12.Ja) Time evolution of lowest 5 Fourier components (PJ, v = +2, +1, 0) of wave 
amplitude 4. uJC = 0.16, E = 0.072, K = 1.80, AT = 0.00063. (b)  Amplitude spectrum of wave 
amplitude A at T = 27. uL/C = 0.16, E = 0.072. Circles are spectrum at T = 0. 

Case (v) E = 0.120 
Since the initial wave amplitude is relatively large, the effect of turbulent 

dissipation in water (N) is small. The evolution pattern of the lowest 5 harmonics in 
figure 11 (a) is similar to that in case (iii). After many quasi-recurrence cycles, the 
- 1st harmonic gradually outgrows the other harmonics. The h a 1  amplitude 
spectrum in figure 11 (b) at  7 = 75 clearly shows the permanent frequency downshift. 

Case (vi) E = 0.072 
Because of the relatively small initial wave amplitude and strong wind, the overall 

spectrum grows rapidly. After the first recurrence cycle, the evolution soon becomes 
quite chaotic (figure 12a). The amplitude spectrum in figure 12(b) a t  7 = 27 shows 
that the wave energy is widespread over a broad range of spectrum. We have found 
that the local maximum wave steepness becomes as large as 0.36. Therefore breaking 
can take place locally and temporally, which might modify the evolution process. 
This is unfortunately beyond the scope of our theory. 

(N = 0.064) 

(N = 0.30) 
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Based on observations of 6 different cases, we conclude that: 
1. Wind plus damping tend to enhance the lower sideband and suppress the upper 

sideband of the modulational instability, leading to the permanent frequency 
downshift. 

2. If the initial amplitude of the uniform wavetrain is small, higher harmonics of 
the original sideband instability also become unstable eventually, and the peak 
frequency tends to migrate further downward. 

3. As the wind speed increases, the time evolution becomes more chaotic and the 
spectrum tends to broaden more rapidly. 

The numerical calculations reported here have all been performed with the 
linear-logarithmic water current profile defined in (2.7). We have also examined the 
error function current profile, and found qualitatively similar results of the long-time 
evolution as far as the initial condition is identical. 

Based on the numerical results of the evolution of A,  we may calculate the time 
history of the modified surface shear q0 and the modified induced current II.Q in (6.60). 
Then the coefficients K~~ and K~~ can be calculated in the phase velocity c” (6.67) and 
the group velocity Eg (6.68). However, we recall that in the definition of the basic 
current profile (2.7), a frame of reference following the surface drift velocity has been 
chosen. If the logarithmic law is adopted for all depth, then the induced current 
would become unbounded at y = - 00. In reality the profile eventually deviates from 
the logarithmic and reaches a constant, whicn in turn defines the real surface drift 
velocity in the fixed frame of reference. The value of this surface drift must be 
determined empirically, and is circumvented in this study. 

9. Concluding remarks 
We have developed a two-dimensional theory for the effect of moderate wind on 

the long-time evolution of a narrowbanded gravity wave. Eddy viscosity models 
have been adopted for turbulence in air and water. Energy input from air to water 
and energy dissipation due to eddy viscosity in water are assumed to occur over the 
same timescale as the asymmetric evolution of the wave spectrum (fourth-order in 
wave steepness). 

After calculating the nonlinear air flow over gravity waves, the value of the eddy 
viscosity is determined so that the initial linear growth rate of waves due to wind 
agrees with Plant’s (1982) empirical formula. The nonlinear growth rate decreases as 
the wave steepness increases, consistent with Gent & Taylor’s (1976) second model. 
Next, we have carried out a perturbation analysis of water waves up to fourth order 
in wave steepness, and obtained the evolution equation of the wave amplitude A” and 
the wave-induced long current $,, on the timescale oft, = eat. The effects of the wind 
energy input, the wind-induced current, and turbulent dissipation in water are all 
included. 

The initial growth rate of sideband instability is found to be sensitive to the 
assumed profile of wind-induced current in water. The knowledge of the exact 
current profile is essential to predict the effect of wind accurately. In the subsequent 
nonlinear evolution of the sideband instability the nonlinear energy input rate from 
wind through surface normal stress is far more important. With a moderate wind 
shear the wave energy gradually shifts to the lower sideband, yielding permanent 
frequency downshift. Although this tendency is present in most of the cases 
examined, the evolution becomes more chaotic as the wind strength increases. 

Our numerieal results of the evolution of sideband instability give strong evidence 
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that the effect of wind can cause the downward migration of the peak frequency of 
an ocean wave spectrum. However, the present theory is only intended for a weak 
wind within a narrow range of strength, and does not apply to a stronger wind where 
breaking may occur. It would be highly desirable to extend our theory to a 
broadband spectrum on the basis of Zakharov’s theory so that more quantitative 
comparison can be made with laboratory or field observations. However, it appears 
numerically difficult to compute the nonlinear air flow over such waves. Many 
formidable challenges are still ahead for a better understanding of physics of wind 
and waves. 

This work was initiated with the support by the Office of Naval Research Physical 
Oceanography Program under the Accelerated Initiative on Surface Wave Dynamics. 
Partial support has been received from National Science Foundation Programs of 
Fluids/Particulates/Hydraulic Systems and Ocean Engineering (Grant no. MSME 
881312 1 ) . 

where 

Appendix A. Simplification of the normal stress boundary condition 
First the tangential derivative of (3.13) is taken along the interface : 

3P aPaag ag a a ac --__- +-+ cr:- (A)  + U:- (A)  - ax ayax ax ax ay ax 

(A 2) 

(A 3) 

Since the particles on the surface remain there and the velocity is continuous across 
the surface, we have 

(A 4) 

(A 5 )  

-- ap’ - - -9 + g: V2U - 4 2  V2U/, 

-_ - - -2+g:V2v-g372v’. 

ax ax 

aY aY 
Introducing (A 4) and (A 5 )  into (A 1) to eliminate p’, 

ac 1.h.s. + g: V2u + g: V2v - 
ax 

+-+ g:-(A) + 
a 

----- aP apaag ac a 
ax ayax ax ax 

a a a4 2 /ac - g:- ( A )  - g: - (A) -- gL2 V2u’- gL2 V v - + ui2 - (B) + uL2 
ax ay ax ax ax 

Thus 

ax ax 
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Note first that p'lp is much smaller than the wave slope B of interest. Inside the curly 
brackets all the terms multiplied by CT: - 2 are negligibly small. Among the terms 
multiplied by rL2, the dominant term is aL2(a2u'/ay2) from the fifth term in the curly 
brackets, and all other terms are smaller by a factor of either O(E)  or O(r2),  where 6' 
is the normalized boundary-layer thickness in air. Based on these observations, the 
right-hand side of (A 7) is further simplified to: 

p/a;z aw 
r.h.s. of (A 7) = [l +O(s, 6'2)]  = - 

P aY2  ax 
where fk is the non-dimensional normal stress due to  wind. 

Appendix B. Derivation of nonlinear evolution equation of waves at orders 
3 and 4 

All formulae in this Appendix are deduced with the help of MACSYMA. 

At n = 3, the forcing terms are found to be 

1aA a2A 1aA Li 
2ax2 at; 2at2'  
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From (6.27)-(6.29), F30 = G,, = H30 = 0. Hence, 

$20 = $ Z ~ ( X , ,  x2, . . . I yl, y2, . . . , t,, t,, . . .) + $q(x2, x3, . . . y, t,, t,, . . .), (B 13) 

where p2, is the inviscid wave-induced current which depends on slow coordinates 
only, and $q is the modification to the wind-induced current due to the surface shear 
qo given in (6.60). The former is the consequence of the nonlinear surface kinematic 
boundary condition and the normal stress boundary condition over long scales. 

The solvability condition for $31 gives 

After introducing (6.41) to eliminate aA/at,, we obtain the equation valid for t, = 
€9 = O( 1) : 

where 

The last term in (B 16) is again the modification of phase velocity due to the induced 
current at  O(e2), where K ~ ,  is due to $q and K ~ ,  due to p. The fifth term in (B 16) is 
also the consequence of the basic current p and affects the group velocity at  O(E) .  

The solutions at O(e3) are obtained as 

$30 = @31)(~1? x21 . . . 9 y? Y13 . . . 7 t,? t,, . . .), (B 20) 

-+i e2”A -- aA +i e2Y A - aA + gs0(y) A2, (B 22) 

3x1 at, 
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Q3 = Fk3' (B 27) 

where gol(y), glo(y), gz0(y), and g3,(y) are the inhomogeneous solutions of the following 
boundary-value problems 

(B 28) 
a 3 p  -- a2g01 go, = -$eg7, 

aY2 a Y  

At n = 4 we only calculate the forcing terms for m = 1 to obtain the evolution 
equation of wave amplitude A in the timescale oft, = 6% = O(1):  

8A aA * 

eY -+ EZ,, -+ i~~~ -- i e" ~ 

F4, = i (? eY ayS+ a3$ll-,o EZ,, + EZ40 A +a evAA * -+ iEZ6,A2A* + ieYA2 - 

a3A 

ax,  3x1 

ax, ax, ax, at, ax; axlax, 

(B 36) ax, at, ax, at, ax; ax; at, 

3A CIA aA ._ PA P A  i?A + ( E l ,  + EZ50) -+ 31, -- 

,(2y-l)e"- +t(y2-y+ l)ev--l 
a3A P A  a2A - i eY - - i e1/ ___ 

EZ,, = -2gO1+(!!) ey+%ev-, a 3 p  

1/-0 3Y3 

a 3 p  a 3 p  

3Y3 3Y3 
z,, = go1-+go0-++e" 

where (B 37) 
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After invoking (6.41), (B 14), and (B 16), we obtain the evolution equation of A over 
the timescale of t,  = s3t : 

(B 49) where 

-:r 2 -m ii,oeYdy+[mE,e~dy, (B 54) 

and ka0 N E7. are defined by (B 40) - (B 44). 
In the evolution equation (B 48) all the K are the effects of the induced current p, 

pq, and @30. The phase velocity is modified by K ~ ~ ,  K ~ ~ ,  and tca0 a t  O(s3), and the group 
velocity is modified by K ~ ,  and K~~ at O(s2). At this order p also affects the nonlinear 
dispersion through K~~ and the linear dispersion through K~,,. The effects of the normal 
wind stress p ,  appears at  this order through the surface boundary condition (6.19). 

By combining (6.41), (B 16) and (B 48), we obtain the evolution equation up to 
s3t = O(1) : 

16 FLM 230 
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At O(e6) we obtain the forcing term FL0 in the limit of y+-m as 

Therefore $,, is governed by the Laplace equation in long scales: 

with the surface boundary condition (B 14) and 

$20 = 0, y1 =-a. (B 59) 

Equation (B 56) together with (B 58) ,  (B 59), (B 14) constitute the evolution 
equations of the wave amplitude A and the wave induced current $,, up to €9 = 

O(1)- 
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